Effect of pulmonary surfactant protein SP-B on the micro- and nanostructure of phospholipid films.

نویسندگان

  • Antonio Cruz
  • Luis Vázquez
  • Marisela Vélez
  • Jesús Pérez-Gil
چکیده

Monolayers of dipalmitoylphosphatidylcholine (DPPC) and DPPC/dipalmitoylphosphatidylglycerol (DPPG) (7:3, w/w) in the absence or in the presence of 2, 5, 10, or 20 weight percent of porcine surfactant protein SP-B were spread at the air-liquid interface of a surface balance, compressed up to surface pressures in the liquid-expanded/liquid-condensed (LE-LC) plateau of the isotherm, transferred onto mica supports, and analyzed by scanning force microscopy. In the absence of protein, the films showed micrometer-sized condensed domains with morphology and size that were analogous to those observed in situ at the air-liquid interface by epifluorescence microscopy. Scanning force microscopy permits examination of the coexisting phases at a higher resolution than previously achieved with fluorescent microscopy. Both LE and LC regions of DPPC films were heterogeneous in nature. LC microdomains contained numerous expanded-like islands whereas regions apparently liquid-expanded were covered by a condensed-like framework of interconnected nanodomains. Presence of increasing amounts of pulmonary surfactant protein SP-B affected the distribution of the LE and LC regions of DPPC and DPPC/DPPG films both at the microscopic and the nanoscopic level. The condensed microdomains became more numerous but their size decreased, resulting in an overall reduction of the amount of total LC phase in both DPPC and DPPC/DPPG films. At the nanoscopic level, SP-B also caused a marked reduction of the size of the condensed-like nanodomains in the LE phase and an increase in the length of the LE/LC interface. SP-B promotes a fine nanoscopic framework of lipid and lipid-protein nanodomains that is associated with a substantial mechanical resistance to film deformation and rupture as observed during film transference and manipulation. The effect of SP-B on the nanoscopic structure of the lipid films was greater in DPPC/DPPG than in pure DPPC films, indicating additional contributions of electrostatic lipid-protein interactions. The alterations of the nanoscopic structures of phospholipid films by SP-B provide the structural framework for the protein simultaneously sustaining structural stability as well as dynamical flexibility in surfactant films at the extreme conditions imposed by the respiratory mechanics. SP-B also formed segregated two-dimensional clusters that were associated with the boundaries between LC microdomains and the LE regions of DPPC and DPPC/DPPG films. The presence of these clusters at protein-to-lipid proportions above 2% by weight suggests that the concentration of SP-B in the surfactant lipid-protein complexes may be close to the solubility limit of the protein in the lipid films.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of pulmonary surfactant protein

The effects of surfactant-associated protein A (SPA) on lipid adsorption to the air-water interface and accumulation of dipalmitoylphosphatidylcholine (DPPC) in the surface region were investigated at 37%. Dispersions used were bovine pulmonary lipid extract surfactant with or without neutral lipid (NL). Lipid adsorption was examined with the Wilhelmy plate technique and DPPC accumulation by mo...

متن کامل

Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films. I. Micro- and nanostructures of functional pulmonary surfactant films and the effect of SP-A.

Monolayers of a functional pulmonary surfactant (PS) can reach very low surface tensions well below their equilibrium value. The mechanism by which PS monolayers reach such low surface tensions and maintain film stability remains unknown. As shown previously by fluorescence microscopy, phospholipid phase transition and separation seem to be important for the normal biophysical properties of PS....

متن کامل

Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films, II: albumin-inhibited pulmonary surfactant films and the effect of SP-A.

Pulmonary surfactant (PS) dysfunction because of the leakage of serum proteins into the alveolar space could be an operative pathogenesis in acute respiratory distress syndrome. Albumin-inhibited PS is a commonly used in vitro model for studying surfactant abnormality in acute respiratory distress syndrome. However, the mechanism by which PS is inhibited by albumin remains controversial. This s...

متن کامل

Surfactant protein A regulates surfactant phospholipid clearance after LPS-induced injury in vivo.

Previous in vitro studies have suggested that surfactant protein A (SP-A) may play a role in pulmonary surfactant homeostasis by mediating surfactant secretion and clearance. However, mice made deficient in SP-A [SP-A (-/-) animals] have relatively normal levels of surfactant compared with wild-type SP-A (+/+) animals. We hypothesize that SP-A may play a role in surfactant homeostasis after acu...

متن کامل

The fibrinolysis - inhibitory capacity of clot - embedded surfactant is enhanced by SP - B and SP - C

Incorporation of pulmonary surfactant into fibrin inhibits its plasmic degradation. In the present study we investigated the influence of the surfactant proteins (SP)-A, SP-B and SP-C on the fibrinolysis-inhibitory capacity of surfactant phospholipids. Plasmin-induced fibrinolysis was quantified by means of a I-fibrin plate assay and surfactant incorporation into polymerizing fibrin was analyse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 86 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004